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Ordering process and Bloch wall dynamics in a two-dimensional anisotropic spin system

Hiroki Tutu
Department of Physics, Kyushu University 33, Fukuoka 812, Japan

~Received 3 June 1997!

The ordering process of a nonconserved anisotropicXY-spin system in two-dimensional space is investi-
gated. The dynamics is described by the motion of the domain wall, the so-called Bloch wall, which has
chirality, in addition to the curvature of the interface. We obtain a convenient description for the dynamics of
the domain wall, which has a generalized form of the Allen-Cahn-type equation of motion for the phase
boundary, taking into account the effect of the width of the wall. We also discuss the short-scale behavior of
the correlation function for this system when the system relaxes from anO(2) symmetry state to a state having
O(1) symmetry.@S1063-651X~97!12710-6#

PACS number~s!: 05.70.Ln, 64.60.Cn, 75.60.Ch
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I. INTRODUCTION

The ordering process, where defects play an impor
role, has been extensively investigated@1#. In particular the
research for a system havingO(n) symmetry has a history
@2–6#. For an extension of these problems, we consider
anisotropy-induced system on an isotropic system. This
tem may have more of a variety of pattern-forming dynam
and kinetic stages of ordering dynamics than the symme
O(n) system. Considering the uniaxial anisotropy, one of
roles of this anisotropy is to split approximately the ord
parameter-space into the product space of some partial o
parameter-spaces. For example ann-vector system induced
by one anisotropy axis has the spaceO(1)3O(n21) at
most. In such a system one can expect the coexistenc
varieties of topological defects and the coupling of dynam
among them. We will discuss these in the frame of the n
conserved time-dependent Ginzburg-Landau dynamics.

In the present paper we study the two-dimensional an
tropic XY spin system after a quench from an unstable u
form disordered phase to a stable ordered one. We hav
vestigated from both dynamical and statistical viewpoin
focusing on the dynamical regime driven by defects.

Due to its symmetry, this system has an interface sepa
ing two stable phases. In the regions where the anisotrop
not so strong, it is known that the interface has a Bloch w
structure. With a purely mechanical approach, we have
rived that the reduced dynamics for the interface consist
Bloch walls. We have obtained similar results to what
known for the interface dynamics for the scaler-order para
eter system, the so called Allen-Cahn equation@7#, but which
includes some slightly new features.

We have also investigated the behavior of the correla
function on a small scale, both numerically and theoretica
We will discuss the crossover behavior for that in the
sumption that the system reduces its symmetry dynamic
from O(2) to O(1), utilizing results obtained from our in
terface approach, and a general consequence for the co
tion function of theO(n) system obtained by Ohta, Jasno
and Kawasaki, and Tomita, Toyoki, and Bray.

This paper is organized as follows. In Sec. II we pres
the model. In Sec. III we obtain the fundamental equatio
controlling the interface dynamics for this system. In Sec.
561063-651X/97/56~5!/5036~8!/$10.00
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we discuss the crossover behavior of the correlation funct
We then summarize all the results in Sec. V.

II. MODEL

Let us consider the Ginzburg-Landau free energy w
anisotropy in two-dimensional space@8,9#,

H$c,c* %5E H 2ucu21 1
2 ucu42

g

2
~c21c* 2!1u¹cu2J dr,

~2.1!

wherec is a complex order parameter, andg is the strength
of the anisotropy. The third term in the integrand represe
the anisotropic energy, which produces a preferred direc
in the circular order-parameter space.

We consider the time development of the order parame
which represents a nonconservative anisotropicXY-spin sys-
tem. Using the free energy Eq.~2.1!, let us assume that th
evolution ofc(x,t) obeys

] tc~r,t !52
dH$c,c* %

dc* ~x,t !
5c2ucu2c1gc* 1¹2c,

~2.2!

where the parameters and the variable have been scale
propriately, and we have neglected random force.

This system has discrete uniform states for nonzerog,
which is taken to be positive without generality. The stab
uniform states arec56A11g, and the unstable uniform
states arec50 and 6 iA12g for g smaller than unityg
(,1).

As is well known, the above system has two types
domain wall solutions@10#, Ising and Bloch walls. Varieties
of the wall structure result from the competition between
anisotropy and the elasticity, i.e., the third and fourth ter
in the free energy Eq.~2.1!. Both walls are also very familiar
in liquid-crystal systems@11#. The Ising~Néel! wall is given
by

c I~r!56A11gtanh@n•~r2r0!/j I #, ~2.3!
5036 © 1997 The American Physical Society
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56 5037ORDERING PROCESS AND BLOCH WALL DYNAMICS IN . . .
where1 (2) stands for the kink~antikink! which is located
at the positionr0, and has the interface normal to the un
vectorn and the widthj I5A11g/A2. This solution is stable
for g. 1

3. Because of the strong anisotropy, the order para
eter vanishes at the center of the wall.

On the other hand, the Bloch wall stably exists forg, 1
3

and takes the form

cB~r!5pX@n•~r2r0!/jB#1 iqY@n•~r2r0!/jB#,
~2.4!

where X(x)5X0tanh(x), Y(x)5Y0sech(x) (X05A11g,
Y05A123g), jB51/A2g is the width of the interface, and
both p and q take either11 or 21. Here the sign ofq
represents the chirality of the wall@10#. Walls with different
chilarity have equal stability. In contrast to the Ising wall, t
order parameter does not vanish at the Bloch wall, since
anisotropic energy is weaker than the elastic energy.

In a previous work @12# we investigated the one
dimensional version of Eq.~2.2!. In that system the degree o
freedom for the chilarity on the Bloch wall plays a spec
role. Let qi be the sign ofq at the i th Bloch wall. The
quantity( i(21)iqi turns out to be a conservative quantity
the course of time. Due to this conservation law, the ass
bly of Bloch walls eventually forms a corkscrew structur
This is a particular characteristic in the one-dimensional s
tem. In the present two-dimensional system, however, th
is no such particular structure so long as we use the u
periodic boundary condition. In Sec. III we derive the d
namics for Bloch walls by generalizing to the curved inte
face and by introducing space-dependent chirality.

III. BLOCH WALL DYNAMICS

The interface dynamics for conserved and nonconser
one-component order parameter system has been deve
by Lifshitz @13#, Allen and Cahn@7#, and Kawasaki and Ohta
@14#. It gives reduced information about how interfaces d
velop in the course of an ordering process. We can conti
to investigate the present system along the lines of the ab
works.

For the interface formed by Ising walls forg. 1
3, the in-

terface dynamics gives the same results mentioned ab
since such system is considered to be effectively o
component system. Thus we focus our attention on the
gime 0,g, 1

3, where the Bloch wall is stable. Let us refer
regions with Rec50 as interfaces, and regions withc'0
asdefects.

Figure 1 shows characteristic patterns ofc(r,t) for
g50.03 at two different times denoted 1~earlier time,
t5196) and 2~later time,t5416), and that for two differen
quantities denoted Figs. 1~a1!, and 1~a2! for amplitudeucu
and Figs. 1~b1! and 1~b2! for corresponding Imc. Here we
have numerically solved Eq.~2.2! by using the explicit Euler
scheme on a two-dimensional square with the perio
boundary condition. The numerical calculation has been
ried out on a square of size 5123512 , with a discritized time
step 0.02 and a spatial mesh size 0.5, using initial conditi
ucu'1023.

In view of Fig. 1~a!, there are interfaces which separa
two phasesc5A11g and c52A11g regions. Further-
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more, each interface contains defects with even numb
which annihilate by the collision with each other in th
course of time. Alternative views of Fig. 1~b! show the man-
ner in which segments~bright or dark region! on an interface
shrink and disappear successively.

Let us consider an interface located atr0[r0(s,t), where
s is the arclength. Here we consider the late stage dynam
in which the curvatures of interfaces are sufficiently smo
and all interfaces can be treated independently. In the vi
ity of the interface the order parameter can be written in
form of Eq. ~2.4!. Let us introduce a continuous variab
q(r,t) instead of q in Eq. ~2.4!. Thus we assume the
following-order parameter profile:

c~r,t !5X@n~s,t !•~r2r0!/jB#

1 iq~r,t !Y@n~s,t !•~r2r0!/jB#, ~3.1!

whereq(r,t), which will be denoted asq, is a real variable.
q parametrizes the chirality of the Bloch wall and takes v
uesq.61 in regions except for defects, signs correspon
ing to the right- or left-hand rotation of a wall.n(s,t) is the
unit normal vector to the interface located atr0(s,t) ~Fig. 2!.
However, the above representation is not complete, since
width of wall is not a constant. To take into account t
width of wall, Eq. ~3.1! is generalized into

c~r,t !5X@h~r,t !/jB#1 iq~r,t !Y@h~r,t !/jB#, ~3.2!

with a position-dependent variableh(r,t). One finds that
h(r,t) represents the distance from an interface. Furth
more, let us introduce the metricgh[gh(r,t)[¹h•¹h.
Heregh takes unity except near defects (q;0). One easily
finds the relation

h~r,t ![E
r0

r
Aghn~x,t !•dx. ~3.3!

We will find the relation between the metricgh and the
variableq later.

The substitution of Eq.~3.2! into Eq.~2.2!, by treating the
real and imaginary parts separately, leads to a pair of eq
tions of motion for the interface as

] th5jBtanh~h/jB!~11g24ggh2Y0
2q2!1¹2h,

~3.4!

] tq5~12g22ggh2Y0
2q2!q1¹2q

2~2/jB!tanh~h/jB!¹q•¹h. ~3.5!

To extract useful results from the above equations, we
sume the temporal evolution ofh in Eq. ~3.4! can be re-
garded as quasistatic. This assumption is well satisfied
long as we are concerned with the smooth interface.

Taking gradients of both sides of Eq.~3.4! with the use of
¹h5Aghn, and an operating inner product with a unit no
mal vectorn and a unit tangent vectort separately to it, we
obtain the following pair of equations:
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FIG. 1. Temporal evolution of thec(r ,t). ~a1! and~a2! show patterns of amplitudeucu for different timest5196 ~a1! andt5416 ~a2!.
~b1! and~b2! show same-time patterns of (Imc) of ~a1! and~a2!, respectively. The patterns in~a1! and~a2! consist of interfaces~the gray
region! which separate the two phases~bright region! and the defects~black region!. Patterns in~b1! and~b2! consist of segments of blac
and white regions corresponding to the opposite chirality on the interface.
e

nt.ne
] tAgh5sech2~h/jB!~11g24ggh2Y0
2q2!Agh

2jBtanh~h/jB!~4gn•¹gh1Y0
2n•¹q2!

2~¹u!2Agh1¹2Agh, ~3.6!

Agh] tu52jBtanh~h/jB!~4gt•¹gh1Y0
2t•¹q2!

12¹Agh•¹u1Agh¹2u, ~3.7!

FIG. 2. The geometry of the interface. Dashed and solid li
denote the interface defined by Rec50, and the width of wall
associated with it, respectively.
whereu is the directional angle defined vian[(cosu,sinu)
and t[(2sinu,cosu). Since we focus our attention on th
interface h;0 (r;r0), we then multiply tanh8(h/jB) to
Eqs.~3.6! and~3.7!, and integrate them with respect toh/jB
by neglecting theh dependence ingh , q, u, andn by as-
suming a weak dependence of them onh. We obtain the
reduced equations

] tAgh5
1

C
~11g24ggh2Y0

2q2!Agh2~¹u!2Agh1¹2Agh,

~3.8!

Agh] tu52¹Agh•¹u1Agh¹2u, ~3.9!

where 1/C5*dy@ tanh8(y)#2/*dy tanh8(y)5 2
3. Applying

the quasistatic assumption toAgh in Eq. ~3.8!, we obtain

11g24ggh2Y0
2q2'C~¹u!2, ~3.10!

where only the lowest-order term was taken into accou
Substituting Eq.~3.10! into Eqs.~3.4! and ~3.5!, we obtain
reduced equations as follows:

s
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vn52
1

Agh

¹•Aghn52¹•n~r,t !2 1
2 n•¹lngh ,

~3.11!

] tq5
Y0

2

2
~12q2!q1

C

2
~¹u!2q1¹2q

2
2

jB
tanh~h/jB!¹q•¹h, ~3.12!

gh511
123g

4g
~12q2!2

C

4g
~¹u!2, ~3.13!

where we have used] th1v•¹h50 in the frame moving
with the interface in Eq.~3.4!, and defined the normal com
ponent of the interface velocityvn[vn(r(s,t)).

Here the curvature of interface at the positionr0(s,t) is
defined by

k[k~r,t !5¹•n~r,t !5¹u•t~r,t !. ~3.14!

Using the above and the relation¹u5kt on the interface, we
express¹•n and (¹u)2 in Eqs. ~3.11!, ~3.12!, and ~3.13!
with the curvaturek.

For later consideration, let us introduce a scaled local
ordinate systemq(x8,y8,t)[q(z/j0,h/jB ,t) instead of
q(x,y,t), wherej0([2/Y0) is the width of the wall connect-
ing the opposite state ofq, and has the meaning of the defe
core size for the regionj0!jB . These coordinates are lo
cally orthogonal to each other, and satisfy the formulas

¹q5
Agz

j0
t]x8q1

Agh

jB
n]y8q, ~3.15!

¹2q5
gz

j0
2

]x8
2 q1

gh

jB
2

]y8
2 q1

1

j0
~¹•Agzt!]x8q

1
1

jB
~¹•Aghn!]y8q, ~3.16!

gz[¹z•¹z,¹z•¹h50, ~3.17!

where one should note that the value ofgz is arbitrary cho-
sen. Applying the above formulas and a relation¹•t50,
which should be satisfied on the interface to Eq.~3.12!, we
obtain

j0
2

2

d

dt
q5~12q2!q1

Cj0
2k2

4
q1

gz

2
]x8

2 q1
gh

2 S j0

jB
D 2

3$]y8
2 q22~]y8q!tanh~y8!%, ~3.18!
-

where we defined the time derivativedq/dt with respect to
the coordinate moving with the interface by (d/dt)q5] tq
2(1/jB)(¹•Aghn)]y8q. By assuming that the curvature
sufficiently smooth and that they8 dependence ofq can be
neglected, the last term in Eq.~3.18! is ignored. Thus the
reduced results are summarized as

v52kn2¹ ln~Agh!, ~3.19!

j0
2

2

d

dt
q5~12q2!q1

Cj0
2k2

4
q1 1

2 ]x8
2 q, ~3.20!

gh511
2jB

2

j0
2 ~12q2!2

CjB
2

2
k2, ~3.21!

where we chosegz51.
These results are interpreted as follows. The evolution

q obeys Eq.~3.20!, and it is weakly coupled with the curva
ture. The fluctuation ofq on the surface alters the width o
wall through the factor 1/Agh, and makes some small co
rection to the interface velocity in addition to the main co
tribution from the surface tension. One will find that the
results give no significant correction to the very familiar i
terface dynamics for the one-component TDGL system d
cussed below.

As mentioned above, the present system has two mi
scopic lengths: the defect core sizej0 and the interface width
jB . Because of this fact, two types of situation take pla
Let us first consider the situationj0@jB , whereg is close to
1
3. From Eqs.~3.19! and~3.21!, the interface velocity is given
by vn.2k. So the time development of the interface
driven by the curvature. By considering the quasiequilibriu
state (q̇'0) without spatial variation (]x8

2 q'0), Eq. ~3.20!
givesq2;11Cj0

2k2/4. The order parameter is thus writte
as c;X@h/jB#1 iAY0

21Ck2sech(h/jB). This means that
the fluctuation of the interface suppresses the transition f
the Bloch wall to the Ising wall. This result was checked
our numerical simulations.

Let us next consider the situationj0!jB , where an inter-
face description is still valid. In this case, one obtainsjB

21

@k, and one must treat the two regions on the interface~i!
near defect (q;0) and~ii ! near the wall region (q5q0, q0

2

;11Cj0
2k2/4), separately. Equation~3.21! is estimated as

gh;12C(jBk)2 for q;q0, and gh;112(jB /j0)2@1
2(C/4)(j0k)2#;2(jB /j0)2@12(C/4)(j0k)2# for q;0.
Thus one obtains the interface velocity as

vn;H 2k2CjB
2k3 for q;q0

2k2
C

4
j0

2k3 for q;0,
~3.22!
ral
ction
TABLE I. Dynamical exponentl;tz for the growth laws for the characteristic length scale for seve
values ofg. We measured this exponent numerically with the half-width length of the correlation fun
C(r ,t), utilizing least-squares regression.

g 0.0 0.005 0.01 0.03 0.1 0.3 0.4
z 0.388 0.359 0.368 0.397 0.394 0.427 0.424
err. 0.005 0.003 0.005 0.014 0.007 0.011 0.007
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5040 56HIROKI TUTU
where we used the relationn•¹k5k3. This implies that the
velocity of the interface depends onq, while it is small in
comparison with2k due to the surface tension. One shou
note that wheng is sufficiently small, due to the divergenc
of jB , the concept of the interface loses its validity, a
instead we may have to use a dynamics based on a d
picture.

The above results imply the ordering process in
present system is mainly controlled by the surface tens
except in the early kinetic stage. Although we derived a c
rection to the interface velocity, due to the fluctuation of t
chirality q, this has a minor correction. Therefore one fin
the familiar result for the growth lawl (t);tz (z5 1

2 ) derived
from the dimensional analysis even in the present anisotr
spin system.

The dynamical exponents calculated from numerical
sults are shown in Table I, the method of the numerical c
culation being explained before. We made a statistical a
age with 27 samples of different initial conditions.

IV. CORRELATION FUNCTION

In this section we discuss the equal time correlation fu
tion in the ordering process, which is definedC(r,t)
[^c* (x1r,t)c(x,t)& , where the angular brackets indica
an average over the ensemble of possible initial condition
is known in the isotropic case that the correlation funct
has the scaling formC(r,t)[ f „r / l (t)… with the characteristic
lengthl (t). The scaling functionf (x) was obtained by Ohta
Jasnow, and Kawasaki@2# for the O(1) system. Bray and
Puri @4# and Toyoki@5# generalized it to theO(n) system.

Being different from both the symmetricO(2) andO(1)
systems, the present system has two length constants,jB and
j0, in addition tol (t). The former is the width of interface
and the latter plays the role of the defect core size forj0
!jB .

For the situationj0!jB , one makes the scenario of th
ordering process as follows. Once the system is quenc
from the disordered state, the system experiences the n
O(2) symmetric phase for a short time, and then gradu
converts to theO(1) symmetric phase. In the first stage t
order parameter’s correlation is disturbed by the phase
a
ve

n
m

ect

e
n,
r-

ic

-
l-
r-

-

It

ed
rly

ly

n-

gularity from the defect whenl (t) is less than the width of
interface (l (t)!jB), while in the second stage it is disturbe
by the singularity from sharp interfaces whenl (t) exceeds
jB .

In the alternative situationjB!j0, after the quench the
system gradually proceeds to theO(1) symmetric phase, be
ing associated by interface fluctuations. In the first situat
we studied the crossover process to the idealO(1) symmet-
ric phase by considering the contribution from interfaces

To characterize the crossover process, one may utilize
short-scale behavior of the correlation function. It has be
known that the correlation function represents features of
phase singularity of defects in a small-scale region. For o
and two-component systems in spatial dimensions lar
than two, the scaling functions have been derived
@2,5,4,15#,

f ~z!;H 12
2

p
z at n51

12~ ln22 1
4 2 1

2 lnz!z at n52.

~4.1!

Let us introduce the incomplete scaling function
C(r,t)/^uc(x,t)u2&; f „r / l (t),l (t)…, which describes the
crossover behavior of the scaling function. For the pres
purpose, it is convenient to rewrite functionf „r / l (t),l (t)… as

f „r / l ~ t !,l ~ t !…[12 1
2 ^uc~x1r,t !2c~x,t !u2&/^uc~x,t !u2&.

~4.2!

We evaluate this in two characteristic regimes, (AI) j0
!r ! l (t)!jB @nearly O(2) regime#, and (AII ) j0!jB!r
! l (t) @O(1) regime#. Although there are situations (BI)
jB!r ! l (t)!j0 and (BII ) jB!j0!r ! l (t) near the transi-
tion point from the Bloch wall to the Ising wall, we mainl
discuss regimesAI andAII (j0!jB).

One should note that the order-parameter difference
two different pointx,x1r in Eq. ~4.2! consist of two parts,
one of which is the contribution from ordered regions a
another from defects or interfaces. The former is expres
by the Taylor expansion over a short distance. Thus
estimates
2nd term in Eq.~4.2!;5
^uu¹cuu2&

2^ucu2&
r 2;

1

l 2Ej0

l

dr8/r 8r 2; ln~ l /j0!~r / l !2 for AI

^u¹Xu2&1^u¹Yu2&

2^ucu2&
r 2;0 for AII ,

~4.3!
e

ly
where, using a roughly estimation, we replaced the aver
with the integration of the order-parameter derivative o
the ordered space, i.e.,^•••&;*8drd . . . /l d (*8 implies that
the integral range takesl d space excluding a defect or a
interface region!. The latter cannot be expressed by the sa
expansion, due to the sharpness of the regions.
ge
r

e

Let us express the difference in Eq.~4.2! by the weighted
average of two contributions, and introduce the weightsPI

and PII as nonanalytic contributions for each regime ofAI

andAII . HerePI andPII represent the probabilities that th
segmentr intersects with a defect (AI) and an interface
(AII ), respectively. Therefore, both probabilities are rough
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FIG. 3. Scaled correlation functionC(r / l ,t)/C(0,t) for severalg values. The horizontal axis is scaled by the characteristic len
generated by the half-width of the correlation function. Symbols correspond to times,t512 (s), 152 (3), 452 (L), and 1052 (h).
Auxiliary lines represent form functions for the caseO(2), denotingC2(x) ~solid!, and for the caseO(1), denotingC1(x) ~dashed!,
respectively.
it.

op
estimated asPI;r 2/ l 2 andPII ;rl / l 2;r / l , by considering a
l d volume which confines a defect or an interface within

Applying the order-parameter profile, Eq.~3.2!, for Eq.
~4.2!, we obtain

f „r / l ~ t !,l ~ t !…

;H 12@aI PI1~12PI !bI ln~ l /j0!~r / l !2# for AI

12@aII PII 1QII cII # for AII .

~4.4!

HereaI ,II indicate the order-parameter differences in the
posite phase, so it is a numerical factor of order 1, andbI is
a numerical factor of order 1. The last termQII cII represents
the contribution from the wall region, and is defined as
-

QII cII [
^@Y~x1r,t !2Y~x,t !#2&

2^ucu2&
~4.5!

;
Y0

2

X0
21Y0

2
QII ^@q~x1r,t !2q~x,t !#2&

~4.6!

;
Y0

2

X0
21Y0

2

jB

l
f c„r / l ~ t !… ~4.7!

where f c„r / l (t)…;^@q(x1r,t)2q(x,t)#2&, and QII repre-
sents the probability that the segmentr exists within the
interface, thus it is roughly estimated asQII ;jBl / l 2;jB / l .
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5042 56HIROKI TUTU
Leaving from the regionjB@j0, another time-scale fluc
tuation appears in the form^@q(x1r,t)2q(x,t)#2&
;(11Cj0

2k2/4) f c8 (r / l ), assuming a scaling functio
f c8(r / l ). So we cannot scale the contribution from interfac
with single time scale over regions.

Summarizing the above results, we obtain the followi
forms:

f „r / l ~ t !,l ~ t !…;H 12~AI1BI2CI lnr / l !~r / l !2 for I

12AII ~r / l !2BII ~jB / l ! f c~r / l ! for II,

~4.8!

whereAI ,II ,BI ,II , andCI are numerical factors or other d
mensionless correction reduced from complex integr
which are not written as scaling form.

To summarize results of the scenario of the ordering p
cess, it may be concluded that the correlation function
haves asC(r,t); f̃ „r / l (t),jB / l (t),j0 / l (t)… generally, and
that it decays simply to theO(1) form with a time scale
;jB / l (t) in a regionjB@j0.

Next let us show the results of our numerical calculatio
The method of numerical calculation was explained at
beginning of Sec. III. We made a statistical average with
samples of different initial conditions. Figure 3 shows t
time development of the correlation function for severalg
values. These figures are scaled withl (t) obtained from each
half-width value of it. Auxiliary lines drawn on the figure
represent

f 1~x!5
2

p
arcsin@exp~2 ln2/2x2!# ~dashed line!,

~4.9!

f 2~x!5
p

4
s1/2F~ 1

2 , 1
2 ,2,s!, s5exp~2x2! ~solid line!,

where the functionF is the Gaussian hypergeometric fun
tion @5,8,9#. These functions are exact forms of Eq.~4.1!.
One can clearly find crossover behavior between both for

We characterize the asymptotic behavior of relaxation
the correlation function from theO(2) form to theO(1) one
by defining a quantity that extracts the difference betwee
numerical result and theO(1) correlation function as

D~ t !5E
0

`

dx@ f 1~x!2 f „x,l ~ t !…#2. ~4.10!

From Eqs. ~4.8! and ~4.10!, one finds the scaling form
D(t);(jB / l )2;(gt)21 in the regionjB@j0, but, leaving
from the regionjB@j0, this form is disturbed by anothe
time scalej0 / l (t). Figure 4 shows the results forD(t) for
several values ofg ~upper figure!. D(t) decays simply for
nonzerog as times goes on. The lower figure of Fig. 4 sho
the scaling representation byD̃(gt). One can find the deca
processD(t);(gt)21 except in the early kinetic stage fo
jB@j0 (g,1/11), and its violation forj0@jB (g.1/11), as
we explained.
s

s,

-
-

.
e
7

s.
r

a

s

V. SUMMARY

In this paper we showed a nonconserved, purely diss
tive, anisotropicXY system. This was done by first derivin
evolution equations for the interface with chirality. The sam
argument can be easily extended to an anisotropicn-vector
system with isotropic elasticity. We found a relation betwe
interface width and the fluctuation of the chirality. When t
wall width is shorter than the ordering length, the evoluti
is described by an Allen-Cahn-type equation weakly coup
with the amplitude of chirality.

We also investigated the crossover behavior of a corr
tion function in the small-scale region. Similar studies of t
crossover behavior have recently been carried out. See,
Ref. @16#. In the present system the crossover behavior w
characterized by the width of the Bloch walljB and the
time-dependent length scalel (t), which characterizes the or
dered region, even though there is another associative le
constantj0, which is the defect core size forj0!jB , or the
width of the wall for the chirality on the interface forj0

FIG. 4. Asymptotic behaviors of the correlation function vs tim
t calculated from Eq.~4.10!. Numerical values in the figures ar
those forg. D(t) turns out to decay as (gt)21 over a long time.
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@jB . The crossover in the correlation function is seen by
magnitude ofl (t)/jB in the limited situationjB@j0. We
characterized the crossover by utilizing the difference of
correlation function from the idealO(1) function. We found
the decay form for it by considering the contribution fro
interfaces, neglecting the correlation among defects in
nearlyO(2) regime. The prediction turned out to agree w
the numerical result. In this estimation we used only
dimensionality of the defect and the space. This argum
ke
e

e

e

e
nt

may be easily generalized inton-component systems. Thi
will be reported in a near future.
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