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Ordering process and Bloch wall dynamics in a two-dimensional anisotropic spin system
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The ordering process of a nonconserved anisotrpiespin system in two-dimensional space is investi-
gated. The dynamics is described by the motion of the domain wall, the so-called Bloch wall, which has
chirality, in addition to the curvature of the interface. We obtain a convenient description for the dynamics of
the domain wall, which has a generalized form of the Allen-Cahn-type equation of motion for the phase
boundary, taking into account the effect of the width of the wall. We also discuss the short-scale behavior of
the correlation function for this system when the system relaxes fro®(@) symmetry state to a state having
0O(1) symmetry[S1063-651X%97)12710-9

PACS numbg(s): 05.70.Ln, 64.60.Cn, 75.60.Ch

I. INTRODUCTION we discuss the crossover behavior of the correlation function.
We then summarize all the results in Sec. V.

The ordering process, where defects play an important
role, has been extensively investigatdd. In particular the Il. MODEL
research for a system havir@(n) symmetry has a history
[2—6]. For an extension of these problems, we consider an Let us consider the Ginzburg-Landau free energy with
anisotropy-induced system on an isotropic system. This sysanisotropy in two-dimensional spafg,9],
tem may have more of a variety of pattern-forming dynamics
and kinetic stages of ordering dynamics than the symmetric ¥
O(n) system. Considering the uniaxial anisotropy, one of the H{#, * } = f [ =l + 3]l §(¢2+ P2+ |Vtﬂ|2] dr,
roles of this anisotropy is to split approximately the order- 2.1)
parameter-space into the product space of some partial order

parameter-spaces. Fo_r exampleramector system induced where is a complex order parameter, amds the strength
Enyostn?na;;sc%trgpg :t)((alrsn r;?]se t(?aen Sgﬁ;)iﬁlg(cno;;)st:rtlce o; the anisotropy. The third term in the integrand represents
o y P ) € e anisotropic energy, which produces a preferred direction
varieties of topological defects and the coupling of dynamlcsin the circular order-parameter space
2cr)nr105r(]egrvt:§?ﬁ1\é\{zgvﬂn%:§tjsgirtgfnsﬁ I?L;T%;r:genzmiiz NON*" \e consider the time development of the order parameter,
P 9 AU dyn " . which represents a nonconservative anisotrapyespin sys-
In the present paper we study the two-dimensional aniso; .
. ; -tem. Using the free energy E¢R.1), let us assume that the
tropic XY spin system after a quench from an unstable uni- volution of (x,t) obeys
form disordered phase to a stable ordered one. We have iy, ' y

vestigated from both dynamical and statistical viewpoints,

focusing on the dynamical regime driven by defects. _ oH{ygy*} ) R
Due to its symmetry, this system has an interface separat- dup(r)=— SU* (x,t) = b=ty + Vo,
ing two stable phases. In the regions where the anisotropy is ’ 2.2

not so strong, it is known that the interface has a Bloch wall
structure. With a purely mechanical approach, we have de- .
rived that the reduced dynamics for the interface consists o‘?’rr;err?aigle p:;%mﬁéegz\?enﬂ;hﬁx\:/; réarb;?] dhoagiobrizn scaled ap-
Bloch walls. We have obtained similar results to what isP 'IE)his syétem has discreteguniform states for ﬁonz o
known for the interface dynamics for the scaler-order param- y £

eter system, the so called Allen-Cahn equafighbut which Whlch is taken to be positive without generality. The. stable
includes some slightly new features. uniform states are/=*++/1+ vy, and the unstable uniform

We have also investigated the behavior of the correlatiorj{at€s are@y=0 and xiy1—y for y smaller than unityy
function on a small scale, both numerically and theoretically. <1). )
We will discuss the crossover behavior for that in the as-. AS iS well known, the above system has two types of
sumption that the system reduces its symmetry dynamicallomain wall solution$10], Ising and Bloch walls. Varieties
from O(2) to O(1), utilizing results obtained from our in- of _the wall structure resu_lt_fror_n the competltlon between the
terface approach, and a general consequence for the correfflisotropy and the elasticity, i.e., the third and fourth terms
tion function of theO(n) system obtained by Ohta, Jasnow, N the free energy Eq2.1). Both walls are also very familiar
and Kawasaki, and Tomita, Toyoki, and Bray. in liquid-crystal system§11]. The Ising(Neel) wall is given
This paper is organized as follows. In Sec. Il we presenpy
the model. In Sec. lll we obtain the fundamental equations
controlling the interface dynamics for this system. In Sec. IV i(r)==xy1+ytanin-(r—ry)/& ], (2.3
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where+ (—) stands for the kinKantikink) which is located more, each interface contains defects with even numbers,
at the positionrg, and has the interface normal to the unit which annihilate by the collision with each other in the
vectorn and the width¢, = \/1+ y//2. This solution is stable course of time. Alternative views of Fig(t) show the man-

for y> 1. Because of the strong anisotropy, the order paramner in which segmentright or dark regiopon an interface

eter vanishes at the center of the wall. shrink and disappear successively.
On the other hand, the Bloch wall stably exists o« 3 Let us consider an interface locatedrgrg(s,t), where
and takes the form s is the arclength. Here we consider the late stage dynamics,
in which the curvatures of interfaces are sufficiently smooth
Ye(n)=pX[n-(r—ro)/&g]+iqY[n-(r—ry)/ &g, and all interfaces can be treated independently. In the vicin-

(2.4 ity of the interface the order parameter can be written in the
form of Eq. (2.4). Let us introduce a continuous variable
where X(x)=Xgtanh), Y(x)=Ygsechk) (X,=+1+vy, q(r,t) instead ofg in Eq. (2.4). Thus we assume the
Yo=+1—-3y), £&g=1/\/2y is the width of the interface, and following-order parameter profile:
both p and q take either+1 or —1. Here the sign ofj

represents the chirality of the walL0]. Walls with different J(r,t)=X[n(s,t)-(r—rg)/ &g]
chilarity have equal stability. In contrast to the Ising wall, the )
order parameter does not vanish at the Bloch wall, since the +iq(r,t)Y[n(s,t) - (r—ro)/ &gl (3.1

anisotropic energy is weaker than the elastic energy.
In a previous work[12] we investigated the one- whereq(r,t), which will be denoted ag, is a real variable.

dimensional version of Eq2.2). In that system the degree of g parametrizes the chirality of the Bloch wall and takes val-

freedom for the chilarity on the Bloch wall plays a specialuesq==*1 in regions except for defects, signs correspond-

role. Let g; be the sign ofgq at theith Bloch wall. The ing to the right- or left-hand rotation of a wali(s,t) is the

quantity=;(—1)'q; turns out to be a conservative quantity in unit normal vector to the interface locatedrgts,t) (Fig. 2).

the course of time. Due to this conservation law, the assentHowever, the above representation is not complete, since the

bly of Bloch walls eventually forms a corkscrew structure. width of wall is not a constant. To take into account the

This is a particular characteristic in the one-dimensional syswidth of wall, Eq.(3.1) is generalized into

tem. In the present two-dimensional system, however, there

is no such particular structure so long as we use the usual P(r,O)=X[n(r,0)/ ] +iq(r,O)Y[ n(r,t)/&s], (3.2

periodic boundary condition. In Sec. Il we derive the dy-

namics for Bloch walls by generalizing to the curved inter-

face and by introducing space-dependent chirality. with a position-dependent variablg(r,t). One finds that

n(r,t) represents the distance from an interface. Further-
more, let us introduce the metrig,=g,(r,t)=V7-V7.
lIl. BLOCH WALL DYNAMICS Hereg, takes unity except near defectg~0). One easily

The interface dynamics for conserved and nonconservefinds the relation

one-component order parameter system has been developed
by Lifshitz [13], Allen and Cahri7], and Kawasaki and Ohta "
[14]. It gives reduced information about how interfaces de- 7(r)= f,o \/a?n(x,t)-dx. @3
velop in the course of an ordering process. We can continue
to investigate the present system along the lines of the abo
works.

For the interface formed by Ising walls fgr> 3, the in-

terface dynamics gives the same results mentioned abov The substitution of Eq3.2) into Eq.(2.2), by treating the
- y give X . feal and imaginary parts separately, leads to a pair of equa-
since such system is considered to be effectively one:

. tions of motion for the interface as
component system. Thus we focus our attention on the re-

gime 0< y< 3, where the Bloch wall is stable. Let us refer to

e will find the relation between the metrg, and the
variableq later.

regions with Rey=0 asinterfaces and regions withj~0 dym= Egtani( p/ég) (1+y— 479, Y5a?) + V27,

asdefects (3.9
Figure 1 shows characteristic patterns @fr,t) for

y=0.03 at two different times denoted (earlier time, aq=(1-y—2yg,— Y50%)q+V?q

t=196) and Xlater time,t=416), and that for two different

guantities denoted Figs(dl), and Xa2 for amplitude|y| —(2/ég)tant(7/£g)VQ- V. (3.9

and Figs. 1bl) and Xb2) for corresponding Im¢. Here we

have numerically solved E@2.2) by using the explicit Euler To extract useful results from the above equations, we as-

scheme on a two-dimensional square with the periodisume the temporal evolution aof in Eq. (3.4 can be re-

boundary condition. The numerical calculation has been camarded as quasistatic. This assumption is well satisfied so

ried out on a square of size 54512 , with a discritized time long as we are concerned with the smooth interface.

step 0.02 and a spatial mesh size 0.5, using initial conditions Taking gradients of both sides of E.4) with the use of

|y|~1073. Vo= @n, and an operating inner product with a unit nor-
In view of Fig. 1(a), there are interfaces which separatemal vectorn and a unit tangent vectdrseparately to it, we

two phasesy=+1+vy and = —+/1+ vy regions. Further- obtain the following pair of equations:
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(al) (bl)
(a2)

FIG. 1. Temporal evolution of the(r,t). (al) and(a2 show patterns of amplitudey| for different timest=196 (al) andt=416(a2.
(b1) and(b2) show same-time patterns of (i of (al) and(a2), respectively. The patterns {al) and(a2 consist of interfacefthe gray

regior) which separate the two phas@sight region) and the defectgblack region. Patterns infb1) and(b2) consist of segments of black
and white regions corresponding to the opposite chirality on the interface.

30/9_7;: sech( 71/53)(1"‘7—47917—\((2)(12)@ where 6 is the directional angle defined vig=(cos,siné)
and t=(—sind,cod). Since we focus our attention on the

— &gtant 7/ &g)(4yn- Vg, + Y§n- Vg?) interface ~0 (r~ry), we then multiply tanh(#/&g) to

Egs.(3.6) and(3.7), and integrate them with respect #6¢g

—(V0)2@+ VZ\/Q_’ 3.6 by neglecting then dependence ig,, g, #, andn by as-

suming a weak dependence of them pnWe obtain the

@Ow: — £gtant( 7/ £g)(4yt- Vg, + Y2t-Vg?) reduced equations
+2Vyg,-Vo+ g, V26, (3.7 1
’ ’ g, =5 (L+y=499,~ Y509 g,~ (VO)*\g,+ V*\g,,
(3.8
\g,d:6=2Vg,- Vo+ g, V24, (3.9

where 1C=[dy[tanH (y)]%fdy tanh (y)=2. Applying
the quasistatic assumption @, in Eg. (3.8), we obtain

\ 1+ y—4y9,— Y5a>*~C(V)?, (3.10

FIG. 2. The geometry of the interface. Dashed and solid linegvhere only the lowest-order term was taken into account.
denote the interface defined by Re=0, and the width of wall Substituting Eq(3.10 into Egs. (3.4 and(3.5), we obtain
associated with it, respectively. reduced equations as follows:
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1 where we defined the time derivatiadg/dt with respect to
v,=——V: @nz—V-n(r,t)—%n-Vlng,’, the coordinate moving with the interface bg/¢t)q=4.q
Vg, — (/&) (V- Vg, n)dy.q. By assuming that the curvature is
(311 sufficiently smooth and that thg' dependence off can be
v2 c neglected, the last term in E¢3.18 is ignored. Thus the
5 :
<9tq=?(1—q2)q+ E(V'g)qurVZq reduced results are summarized as
) v=—«kn—V In(\g,), (3.19
— —tani( 5/ ég)Vq- V7, 3.1
£ tanf(7/€5)Va- V' (3.12 2 g ) s

(OF 97
2 q0=(1-qat+——a+3dta, (320

C
9,=1+ 5 (1=~ (V02 (319
gB gB 2
where we have used;n+v-V7=0 in the frame moving g,=1+ §o (1-9°) 2« (3.2
with the interface in Eq(3.4), and defined the normal com-
ponent of the interface velocity,=v,(r(s,t)). where we chosg,=1.
Here the curvature of interface at the positigys,t) is These results are interpreted as follows. The evolution of
defined by g obeys Eq(3.20, and it is weakly coupled with the curva-

ture. The fluctuation off on the surface alters the width of
wall through the factor 4/g,, and makes some small cor-
rection to the interface velocity in addition to the main con-
tribution from the surface tension. One will find that these
results give no significant correction to the very familiar in-
terface dynamics for the one-component TDGL system dis-
cussed below.

k=k(r,t)=V-n(r,t)=Vo-t(r,t). (3.19

Using the above and the relati®®= «t on the interface, we
expressV-n and (V6)? in Egs. (3.11, (3.12, and (3.13
with the curvaturex.

For later consideration, let us introduce a scaled local co-

ordinate system qﬁx Y ’t_) Q(§/§0’U/§B t) instead of As mentioned above, the present system has two micro-
q(x,y,t), Wher_e§0(=2/Y0) is the width of thg wall connect- scopic lengths: the defect core siggand the interface width
'ng thg opposite state. of, and has the meaning of the defect &g . Because of this fact, two types of situation take place.
core size for the regiogy<{g. These poordmates are lo- Let us first consider the situatiagfy> &g, wherey is close to
cally orthogonal to each other, and satisfy the formulas 1 From Eqs(3.19 and(3.21), the interface velocity is given
\/— \/— by v,=—«. So the time development of the interface is
tﬁx q-+ n(;y q, (3.19 driven_by the curvature. By considering the quasiequilibrium
&0 &8 state ~0) without spatial variationé(i,qu), Eq.(3.20
givesq?~ 1+ Cé&3k?/4. The order parameter is thus written
2. 9 e 9y e _ - 2 -
Viq==2d.,q+ ,q+ (V.@I)gx,q as Y~ X[ 7]/§B]+I\/Y02+CK sech(y/&g). This means that
50 §B %o the fluctuation of the interface suppresses the transition from
1 the Bloch wall to the Ising wall. This result was checked by
(V. , our numerical simulations.
i §B(V Yg,maya, (319 Let us next consider the situatigg< &g, where an inter-
face description is still valid. In this case, one obtaias
9,=V{-V{,V{-Vy=0, (3.17 >k, and one must treat the two regions on the interfége,

. . . _ 2
where one should note that the valuegpfis arbitrary cho- rlefi gegf Cﬁ ;E) Os)eagrd;,:gl ne; rutgg Ovéagjgegoensi(imgfég (;S
sen. Applying the above formulas and a relationt=0, 0% b y- =4

2
which should be satisfied on the interface to E312, we 97 ~1-C(égk)* for q~qo, and 9,~1+2(&s/80) 1
obtain B2 We T Cl) (Eom) 21~ 2(¢0 ) €02 1— (CI) (Eor)?] for 0.

Thus one obtains the interface velocity as

Vg=

C&2k2
go —q=(1-g?)q+ g q+%(92q 9 go) —k—Cgx®  for g~do
2 dt &
; o~ C,, (3.22
x{ay,q—Z(ay,q)tam‘(y’)}, (3.18 k= gz« for g~0,

TABLE I. Dynamical exponent~t” for the growth laws for the characteristic length scale for several
values ofy. We measured this exponent numerically with the half-width length of the correlation function
C(r,t), utilizing least-squares regression.

y 0.0 0.005 0.01 0.03 0.1 0.3 0.4
z 0.388 0.359 0.368 0.397 0.394 0.427 0.424
err. 0.005 0.003 0.005 0.014 0.007 0.011 0.007
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where we used the relation V«= «>. This implies that the gularity from the defect wheh(t) is less than the width of
velocity of the interface depends ap while it is small in  interface ((t)<<&g), while in the second stage it is disturbed
comparison with— « due to the surface tension. One shouldby the singularity from sharp interfaces whk) exceeds
note that wheny is sufficiently small, due to the divergence &g.
of &g, the concept of the interface loses its validity, and In the alternative situatiogg<¢,, after the quench the
instead we may have to use a dynamics based on a defexystem gradually proceeds to tB€1) symmetric phase, be-
picture. ing associated by interface fluctuations. In the first situation
The above results imply the ordering process in thewe studied the crossover process to the ide@l) symmet-
present system is mainly controlled by the surface tensionc phase by considering the contribution from interfaces.
except in the early kinetic stage. Although we derived a cor- To characterize the crossover process, one may utilize the
rection to the interface velocity, due to the fluctuation of theshort-scale behavior of the correlation function. It has been
chirality g, this has a minor correction. Therefore one findsknown that the correlation function represents features of the
the familiar result for the growth law(t)~t? (z=3) derived  phase singularity of defects in a small-scale region. For one-
from the dimensional analysis even in the present anisotropiand two-component systems in spatial dimensions larger
spin system. than two, the scaling functions have been derived as
The dynamical exponents calculated from numerical re{2,5,4,19,
sults are shown in Table I, the method of the numerical cal-
culation being explained before. We made a statistical aver-

2
age with 27 samples of different initial conditions. 1-—z at n=1

f(2)~ ™ (4.1)
IV. CORRELATION FUNCTION 1-(In2—-3—3Inz)z at n=2.

In this section we discuss the equal time correlation func- et us introduce the incomplete scaling function as
tion in the ordering process, which is defing@(r,t) C(r,)/{|gp(x,t)|2~F(r/1(t),I(t)), which describes the
=(y* (x+r1,1)(x,t)) , where the angular brackets indicate crossover behavior of the scaling function. For the present
an average over the ensemble of possible initial conditions. lurpose, it is convenient to rewrite functidtr/I (t),I(t)) as
is known in the isotropic case that the correlation function
has the scaling forr@(r,t)=f(r/I(t)) with the characteristic Fr/I(t),1(t)=1—3(|p(x+r,t)— ¢(x,t)|2)/<| ¢(x,t)|2>.
lengthl(t). The scaling functiori(x) was obtained by Ohta, (4.2
Jasnow, and Kawasak®] for the O(1) system. Bray and
Puri[4] and Toyoki[5] generalized it to thé®(n) system. We evaluate this in two characteristic regimeA,)( &,

Being different from both the symmetri®(2) andO(1) <r<I(t)<ég [nearly O(2) regimd, and @A) &<&g<<r
systems, the present system has two length cons@gngs)yd  <I(t) [O(1) regimd. Although there are situationsB()

&o, In addition tol (t). The former is the width of interface, &g<<r<l(t)<<§y and B,)) &g<<ép<<r<I(t) near the transi-
and the latter plays the role of the defect core sizedpr tion point from the Bloch wall to the Ising wall, we mainly
<¢g. discuss regime#, andA;, (é,<<ég).

For the situationfy<£g, one makes the scenario of the  One should note that the order-parameter difference at
ordering process as follows. Once the system is quenchdwvo different pointx,x+r in Eg. (4.2) consist of two parts,
from the disordered state, the system experiences the neardye of which is the contribution from ordered regions and
0(2) symmetric phase for a short time, and then graduallyanother from defects or interfaces. The former is expressed
converts to thed(1) symmetric phase. In the first stage theby the Taylor expansion over a short distance. Thus one
order parameter’s correlation is disturbed by the phase sirestimates

dveld , 1 ) 2
o ) AN 2 or A
ndtem in Q4271 (o3 +(vvd) L, @3
-~ or ,
e !

where, using a roughly estimation, we replaced the average Let us express the difference in E¢.2) by the weighted
with the integration of the order-parameter derivative overaverage of two contributions, and introduce the weidhts
the ordered space, i.€.--)~f'dr?.../1%(f’ impliesthat andP,, as nonanalytic contributions for each regime/gf
the integral range takeld' space excluding a defect or an andA,, . HereP, andP,, represent the probabilities that the
interface region The latter cannot be expressed by the samaegmentr intersects with a defectA() and an interface
expansion, due to the sharpness of the regions. (A, respectively. Therefore, both probabilities are roughly
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FIG. 3. Scaled correlation functio@®(r/I,t)/C(0t) for severaly values. The horizontal axis is scaled by the characteristic length

generated by the half-width of the correlation function. Symbols correspond to ttmd® (O), 152 (X), 452 (¢ ), and 1052 ().
Auxiliary lines represent form functions for the ca€42), denotingC,(x) (solid), and for the cas€(1), denotingC,(x) (dashedq,
respectively.

estimated a®,~r?/12 andP,,~rl/I2~r/l, by considering a (Y (x+1, D= Y(x,D1?)
19 volume which confines a defect or an interface within it. Quen= L 4.9
Applying the order-parameter profile, EB.2), for Eq. (%)
(4.2), we obtain
Y3 ,
fCr/1(t), (1)) v Q||<[Q(X+r t)—a(x,t)]9)
0
1-[aP,+(1—P)bIn(l/&)(r/)?] for A, (4.6
1-[aPy+Qucy] for Ay. 2
(4.9 - fB fer/1(1) .7
' X2+y2 1 ¢ '

Herea, ;, indicate the order-parameter differences in the op-

posite phase so it is a numerical factor of order 1, Bpis ~ where f (r/1(t))~{[q(x+r,t)—q(x,t)]?), and Q, repre-
a numerical factor of order 1. The last tefy c, represents sents the probability that the segmanexists within the
the contribution from the wall region, and is defined as interface, thus it is roughly estimated @y ~ &gl /12~ &g /1.
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Leaving from the regiorfg> &, another time-scale fluc- 107 — , <5
tuation appears in the form([q(x+r,t)—q(x,t)]?) 5—00.005 |
~(1+C&K2I4)EL (rl1), assuming a scaling function S
fo(r/l). So we cannot scale the contribution from interfaces pibberll
with single time scale over regions. %02

Summarizing the above results, we obtain the following s
forms: o4

1—(A+B,—CInr/1)(r/1)? forl
FC/ (1)~ 1= A, (r/1) =By, (&g/D)f(r/1)  forll,
(4.9

whereA, |, ,B, |, andC, are numerical factors or other di-
mensionless correction reduced from complex integrals, 107
which are not written as scaling form.

To summarize results of the scenario of the ordering pro-
cess, it may be concluded that the correlation function be- ;-
haves asC(r,t)~T(r/1(t),&g/1(t),&/1(t)) generally, and
that it decays simply to th€©(1) form with a time scale
~&gll(t) in aregionég>&,.

Next let us show the results of our numerical calculation.
The method of numerical calculation was explained at the
beginning of Sec. Illl. We made a statistical average with 27 —_
samples of different initial conditions. Figure 3 shows the ¥ .-
time development of the correlation function for seveyal am)
values. These figures are scaled wWit) obtained from each
half-width value of it. Auxiliary lines drawn on the figures
represent

fi(x)= %arcsir[exp( —In2/2x?)] (dashed ling,

(4.9 0

™
fo(x)= Zsl’zF(%,%,Z,s), s=exp(—x?) (solid line),
FIG. 4. Asymptotic behaviors of the correlation function vs time

t calculated from Eq(4.10. Numerical values in the figures are

where the functiorF is the Gaussian hypergeometric func- ;o fory. D(t) turns out to decay asyf)~* over a long time.

tion [5,8,9. These functions are exact forms of Eg.1).
One can clearly find crossover behavior between both forms.
We characterize the asymptotic behavior of relaxation for
the correlation function from th@®(2) form to theO(1) one In this paper we showed a nonconserved, purely dissipa-
by defining a quantity that extracts the difference between &ve, anisotropicXY system. This was done by first deriving
numerical result and th®(1) correlation function as evolution equations for the interface with chirality. The same
argument can be easily extended to an anisotropiector
o0 system with isotropic elasticity. We found a relation between
D(UZJ dx{ f1(x) =, 1(1)]% (410 interface width and the fluctuation of the chirality. When the
0 wall width is shorter than the ordering length, the evolution
is described by an Allen-Cahn-type equation weakly coupled
From Egs.(4.8 and (4.10, one finds the scaling form \yith the amplitude of chirality.
D(t)~(&/1)?~(yt) ! in the regionég> &, but, leaving We also investigated the crossover behavior of a correla-
from the regionég> &, this form is disturbed by another tion function in the small-scale region. Similar studies of the
time scalegy/I(t). Figure 4 shows the results f@r(t) for  crossover behavior have recently been carried out. See, e.g.,
several values ofy (upper figurg. D(t) decays simply for Ref.[16]. In the present system the crossover behavior was
nonzeroy as times goes on. The lower figure of Fig. 4 showscharacterized by the width of the Bloch wal and the
the scaling representation [ yt). One can find the decay time-dependent length scdlg), which characterizes the or-
processD (t)~ (yt) ~! except in the early kinetic stage for dered region, even though there is another associative length
&> &y (y<1/11), and its violation fogy> &z (y>1/11), as  constanté,, which is the defect core size fgp<&g, or the
we explained. width of the wall for the chirality on the interface faf,

V. SUMMARY
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>¢£5. The crossover in the correlation function is seen by thanay be easily generalized into-component systems. This
magnitude ofl(t)/&g in the limited situationég>£&,. We  will be reported in a near future.

characterized the crossover by utilizing the difference of the

correlation function from the ide&(1) function. We found

the decay form for it by considering the contribution from ACKNOWLEDGMENTS

interfaces, neglecting the correlation among defects in the

nearlyO(2) regime. The prediction turned out to agree with ~ The author is grateful to H. Fujisaka for valuable discus-
the numerical result. In this estimation we used only thesion and a critical reading of the manuscript, and to H. Fu-
dimensionality of the defect and the space. This argumentukawa for helpful suggestions.
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